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Understanding why social relationships vary among conspecifics is central to studies of animal behaviour. For many 
species, patterns of space use provide important insights into social behaviour. To characterize the social organization 
of the highland tuco-tuco (Ctenomys opimus), we used visual observations and radiotelemetry to quantify spatial 
relationships among adults in a population at Laguna de los Pozuelos, Jujuy Province, Argentina. Specifically, we 
sought to confirm anecdotal reports that these subterranean rodents are social, meaning that adults share burrow 
systems and nest sites. Our data indicate that the animals live in spatially distinct groups, although the number of 
individuals per group varies markedly. Although these relationships were robust with regard to location (above vs. 
below ground) and type of data (visual vs. telemetry), some groups identified during the daytime fissioned during 
the night. We suggest that the population of C. opimus at Pozuelos is facultatively social, meaning that individuals 
display predictable, adaptive differences in social relationships with conspecifics. More generally, our findings add to 
the growing number of subterranean species of rodents recognized as social, thereby generating new opportunities 
for comparative studies of these animals aimed at assessing the causes and consequences of variation in social 
organization.

ADDITIONAL KEYWORDS:   behaviour – Ctenomyidae – home range – social – space use – subterranean 
– telemetry.

INTRODUCTION

The social environment in which an animal lives can 
have profound effects on multiple aspects of its biology, 
including access to mates and other resources (Le 
Boeuf & Peterson, 1969; Farentinos, 1972; Monaghan, 
1985; Creel & Creel, 1995), exposure to predators 
and pathogens (Griffin, 2004; Prado et al., 2009; 
Habig et al., 2018), and response to environmental 
challenges (Madison et al., 1984; Madison & McShea, 
1987; Schradin et al., 2006; Rabosky et al., 2012). 
Accordingly, intraspecific variation in social behaviour 
may have significant effects on survival and fitness 
(Lott, 1991). A fundamental component of the social 

environment is the number of conspecifics with which 
an individual interacts on a regular basis. Although 
studies of social structure have typically focused 
on characterizing a species as solitary or social, the 
number and frequency of social relationships can 
vary markedly among conspecifics (Chapman et al., 
1995; Creel & Winnie, 2005). Facultatively social 
species—those in which solitary and group-living 
animals co-occur in a population and individuals 
display predictable variation in the extent to which 
they interact with conspecifics—provide an important 
opportunity to assess the consequences of differences 
in the nature or magnitude of social interactions. 
Potential effects of such variation include but are 
not limited to differences in stress physiology (Creel 
et al., 2013; Woodruff et al., 2013), gut microbial 
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diversity (Tung et al., 2015; Moeller et al., 2016; Raulo 
et al., 2018), and overall health and immune function 
(Bartolomucci, 2007; Kappeler et al., 2015), indicating 
that facultative differences in social environment 
may play a significant role in determining the fitness 
consequences of interactions with conspecifics.

Because direct observations of social interactions 
are not possible for all species, numerous studies 
have employed spatial associations among individuals 
as a proxy for social relationships (Radespiel, 2000; 
Blundell et al., 2002; Lusseau et al., 2006; Hinze et al., 
2013; Scillitani et al., 2013; Farine & Whitehead, 2015; 
Lacey et al., 2019). Patterns of space use can generate 
critical insights into patterns of social behaviour. 
For example, by determining which animals overlap 
spatially, such analyses can reveal the potential for 
interactions among specific individuals. Analyses 
of the temporal patterning of spatial overlap can 
generate additional insights; social interactions are 
expected to differ depending on whether individuals 
use the same portion of the habitat simultaneously 
(e.g. savanna baboons (Stammbach, 1987)) vs. at 
different points during the 24-h cycle (e.g. coyotes 
(Atwood & Weeks, 2003)). Further, in some taxa, spatial 
relationships may vary with ecological context (e.g. 
above- vs. below-ground activity in ground squirrels 
(Smith et al., 2018)), with associated implications 
for social interactions. As a result, for many species, 
characterizing variability in spatial relationships 
among members of a population may reveal the extent 
to which social relationships vary.

To assess potential variability in social relationships 
among highland tuco-tucos (Ctenomys opimus), we 
examined patterns of space use within a population 
of this species from Jujuy Province, Argentina. Like 
other members of the rodent family Ctenomyidae, 
highland tuco-tucos are subterranean, meaning that 
individuals spend much of their time in below-ground 
burrows (Nevo, 1979; Lacey et al., 2000). Although 
most of the > 60 known species of tuco-tucos (Parada 
et al., 2011) have not been characterized with respect 
to social structure, those that have been studied have 
generally been found to be solitary, with each adult 
occupying its own burrow system and displaying 
minimal if any spatial overlap with other adults (e.g. 
Ctenomys australis (Zenuto & Busch, 1998); Ctenomys 
haigi (Lacey et al., 1998); Ctenomys talarum (Cutrera 
et al., 2006)). A notable exception to this solitary 
lifestyle is the colonial tuco-tuco (Ctenomys sociabilis), 
burrow systems of which are routinely occupied by 
multiple adult females and, in many cases, a single 
adult male (Lacey et al., 1997; Lacey & Wieczorek, 
2004). This interspecific variation in social structure, 
including pronounced differences between species 
that occupy the same general habitat (C. sociabilis 
and C. haigi (Lacey & Wieczorek, 2003)), makes the 

genus Ctenomys an important comparative system for 
exploring the causes and consequences of variation in 
social behaviour.

Although the highland tuco-tuco has been described 
as solitary based on the capture of no more than one 
adult per burrow system in southern Peru (Pearson, 
1959), our anecdotal observations of populations of 
C. opimus in northern Argentina suggest that these 
animals engage in some degree of burrow sharing. 
Highland tuco-tucos from the latter region are unusual 
in that they emerge completely from their burrows to 
forage, with the result that they are visible above ground 
for extended periods of time. Direct visual observations 
indicate that multiple adults may use the same burrow 
entrance when foraging but that individuals vary with 
regard to the number of conspecifics with which they 
interact. To quantify the social structure of C. opimus 
and to assess individual variation in the frequency of 
social interactions, we used a combination of visual 
observations and radiotelemetry to document spatial 
and social relationships among members of this species. 
Specifically, we sought to confirm that adults in our 
study population engage in burrow sharing (a criterion 
for sociality in subterranean species (Lacey, 2000)) and 
determine whether patterns of social interaction vary 
with temporal (daytime vs. night-time) or ecological 
(above vs. below ground) context. Our analyses suggest 
that highland tuco-tucos from northern Argentina 
are characterized by an intermediate form of social 
structure not previously described in Ctenomys. Further, 
the animals display marked inter-individual variation 
in social behaviour that provides a foundation for future 
studies aimed at exploring the adaptive function of 
potential facultative sociality in these animals.

METHODS

Study site

The population of highland tuco-tucos (C. opimus) 
studied was located in Monumento Nacional 
Laguna de los Pozuelos (hereafter referred to as 
Pozuelos), Jujuy Province, Argentina (22°34’ S, 
66°01’ W; elevation: 3600 m). Pozuelos is located 
in a high Andean valley containing a mosaic of tola 
(Parastrephia sp.) shrubland and more open areas 
dominated by salt grass (Distichlis sp.). The study site 
consisted of an approximately 1.5 ha area of salt grass 
habitat bordered to the east by the Río Cincel. The site 
was bounded to the west by tola habitat and to the 
north and south by the remnants of adobe walls used 
historically to contain livestock. Annual rainfall at the 
site was ≤ 200 mm, with most precipitation occurring 
between December and March (Mascitti, 2001). Data 
for this study were collected between 24 December 
2009 and 9 January 2010.
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Animal capture and marking

All procedures were approved by the Animal Care 
and Use Committee at the University of California, 
Berkeley, and were consistent with guidelines 
established by the American Society of Mammalogists 
for the use of wild mammals in research (Sikes et al., 
2016) as well as the guidelines of the Association for 
the Study of Animal Behaviour for the treatment of 
animals in behavioural research (Buchanan et al., 
2012). Members of the study population were captured 
using tomahawk-style live traps baited with carrots. 
Open traps were placed at active burrow entrances, as 
identified by the presence of recently excavated soil and 
fresh faecal pellets as well as observations of animals 
using those entrances. Trapping was conducted 
during daylight hours; open traps were monitored 
continuously, and animals were retrieved immediately 
upon capture. The location of each capture was 
recorded using a hand-held GPS unit (accuracy ~ 6 m). 
Additionally, we recorded each capture locality using 
a Cartesian coordinate system (8 m x 8 m grid cells) 
that had been established on the study site prior to 
the start of trapping. This grid was also used to record 
the locations of animals during radiotelemetry studies 
(see below) and thus documenting capture localities 
with the same coordinate system allowed us to more 
accurately relate captures to home ranges estimated 
from telemetry data.

Upon first capture, each animal was marked for 
permanent identification with a uniquely coded PIT 
tag (IMI-1000, Bio Medic Data Systems, Inc., Seaford, 
DE) that was inserted beneath the skin at the nape 
of the neck. PIT tags were read using a hand-held 
scanner (DAS 4000 Pocket Scanner, Bio Medic Data 
Systems Inc.). For visual identification, each animal 
was also marked by applying human hair dye to the fur 
in a unique combination of colour patches; dye marks 
typically lasted 2–3 weeks before needing to be redone. 
Each time that an animal was captured, its sex and 
body weight were recorded. Data on body weight were 
used to determine the apparent age (juvenile vs. adult) 
of each individual. For adult females, reproductive 
status was assessed based on the appearance of the 
external genitalia (sexually receptive), the ability 
to palpate foetuses (pregnant), or the presence of 
enlarged mammae (lactating). In contrast, because 
the testes of male tuco-tucos do not descend externally 
(Zenuto, 1999), the reproductive status of adult males 
in the study population could not be determined based 
on visual examination.

Radiotracking of study animals

All adults captured were fitted with radio transmitters 
(G3-1V transmitters, AVM Instrument Company, 
Colfax, CA) that were affixed using plastic cable ties 

as collars. The weight of the transmitter and collar 
together (~ 7 g) represented < 5% of the body weight of 
each individual (males: 364.0 ± 47.8 g, N = 10; females: 
309.4 ± 39.1 g, N = 16), as recommended for studies of 
small mammals (Sikes et al., 2016). Collared animals 
were released at the point of capture, after which their 
locations were determined using R1000 receivers 
(Communications Specialists, Inc., Orange, CA) and 
3-element hand-held Yagi antennas (AVM Instrument 
Company). Radio fixes were collected multiple times 
per day, with a minimum of 1 h between successive 
recordings. For each fix, the location of an individual 
was recorded to the nearest half meter using the 8 
m x 8 m grid system established on the study site. 
Analyses of telemetry data for transmitters placed 
at known locations revealed this procedure to be 
accurate within 0.5 m; these analyses also confirmed 
the consistency of spatial data collected by different 
researchers (N = 5). Because these assessments were 
made under ideal conditions (e.g. daylight, immobile 
object), we used a more conservative error estimate 
when analysing our telemetry data; all fixes occurring 
within a 1 m radius of each other were treated as 
the same location. Radio fixes recorded between 
sunrise and sunset (07:00-20:00 h) were categorized 
as daytime data points, whereas fixes recorded from 
sunset to sunrise (20:00-07:00 h) were designated as 
night-time points. During daylight hours, if a collared 
individual was sighted above ground at the time that 
a telemetry fix was made, that datum was noted as a 
visual sighting of the animal and the location at which 
the animal was observed was recorded. Although we 
did not detect evidence of above-ground activity during 
the night, we were not confident of the accuracy of 
visual observations conducted in the dark and thus we 
restricted comparisons of visual vs. telemetry data to 
localities recorded during daylight. At the end of all 
data collection, individuals were recaptured, and their 
radio collars were removed.

Spatial relationships

Patterns of space use were analysed using 95% 
minimum convex polygons (MCPs) generated with 
the adehabitatHR package in R (Calenge, 2019). To 
determine the number of telemetry fixes required to 
generate robust estimates of individual home ranges, 
we examined the relationship between number of fixes 
analysed and MCP size for a random subset of six 
animals from our study population; this sample size 
is comparable to other studies that have examined 
space use in relation to the number of data points per 
individual (Santos & Lacey, 2011; Lacey et al., 2019). 
To explore the temporal consistency of individual 
home ranges, we generated distinct daily MCPs 
(daytime radio fixes only; N = 5 successive days) and 
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then quantified the percent overlap for MCPs for the 
same individual; this comparison was conducted for a 
subset of six animals for which we had ≥ ten fixes per 
day for at least 5 successive days.

To determine if patterns of space use differed when 
animals were above vs. below ground, separate MCPs 
were constructed for above-ground sightings vs. 
telemetry fixes (animals not visible above ground) for 
the same individual. Because visual observations were 
only possible during daylight, the radio fixes used in 
this comparison were also restricted to those collected 
during the daytime. Only data from individuals for 
which ≥ ten visual observations had been obtained 
were included in this analysis. The sizes of MCPs 
constructed from visual vs. telemetry data from the 
same individual were then compared and the percent 
overlap between these MCPs was calculated. Distinct 
pairwise estimates of spatial overlap between different 
individuals were generated for both MCPs based on 
visual observations and those based on telemetry 
fixes. Because overlap between pairs of animals may 
not have been symmetric, estimates of percent overlap 
of MCPs were calculated from the perspective of each 
individual.

To characterize circadian patterns of activity within 
the study population and to determine if spatial 
relationships among individuals differed between day 
and night, radio fixes were collected hourly for a period 
of 5 days and nights (120 consecutive hours). Separate 
MCPs were then constructed for daytime and night-
time fixes for each individual; to avoid potential biases 
resulting from differences in data collection methods, 
only telemetry data used for these analyses. The sizes 
of daytime and night-time MCPs for the same animal 
were compared and the percent overlap between these 
MCPs was calculated. Based on evidence (see Results) 
that members of the study population are diurnal, 
the nest site for each individual was identified as the 
most frequently recorded (modal) x and y coordinates 
obtained during night-time telemetry fixes (Urrejola 
et al., 2005). The percentage of fixes that an animal 
spent at its putative nest site was calculated using 
the standard 1-m error distance described above. 
To account for the unknown sizes of nests (i.e. the 
potential for animals to change locations while 
remaining in the nest), the percentage of fixes falling 
within 5 m of the modal x and y coordinates for each 
animal was also calculated and this value compared to 
the percentage of fixes assigned to the nest using the 
more conservative 1 m error distance.

Social network analyses

To identify spatially distinct groups of animals and 
to assess potential variation in social relationships 
among members of the study population, we used 

social network analyses (Wey et al., 2008; Krause 
et al., 2009) to identify the number of significant social 
interactants per individual. Specifically, pairwise 
measures of percent overlap between MCPs for 
different animals were used to generate association 
matrices that were then analysed with SOCPROG 
(Whitehead, 2009) to identify hierarchical spatial 
clusters of individuals. The fit between association 
matrices and the resulting clusters was assessed using 
the cophenetic correlation coefficient, with values ≥ 
0.8 considered indicative of a strong correspondence 
between these data sets (Bridge, 1993). Social groups 
were identified using the maximum modularity 
criterion, which provides a measure of the degree to 
which the study population was divided into distinct 
spatial units (Newman, 2006; Whitehead, 2008). Cut-
off values for significant spatial associations among 
individuals were generated by SOCPROG for each 
data set examined. Graphical depictions of networks 
among spatially clustered individuals were generated 
using the R package igraph (Csardi & Nepusz, 2006). 
To compare relationships during the day vs. the 
night, separate network analyses were conducted 
for each temporal period. To compare relationships 
when animals were above vs. below ground, separate 
analyses were conducted using daytime spatial data 
collected visually vs. via telemetry; only individuals 
with ≥ ten visual observations were included in these 
analyses.

Statistical analyses

Normality of the data was assessed using Shapiro-
Wilks tests, after which parametric or non-parametric 
statistics were used as appropriate. Statistical analyses 
were performed using R v. 3.5.0 (R Core Team, 2013). 
All means are reported ± 1 SD.

RESULTS

A total of 26 adults (10 males, 16 females) were 
monitored via telemetry over a period of 17 days. The 
mean number of days per animal on which telemetry 
data were collected was 8.9 ± 3.9 (range = 3–15) for 
males and 8.2 ± 3.9 (range = 2–16) for females. The 
number of animals under study increased over 
successive days as more individuals were captured and 
marked and thus our data set included multiple days 
in which all 26 adults were monitored concurrently. 
An additional eight adults observed on the study site 
were not captured (N = 4) or were captured too late in 
the field season to generate substantial telemetry data 
(N = 4). Thus, overall, telemetry data were obtained 
from 76.5% of adults in the study population. The 
individuals that were not monitored were scattered 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa011/5737804 by  slobrien@

berkeley.edu on 18 February 2020



S. L. O’BRIEN ET AL.  5

© 2020 The Linnean Society of London, Biological Journal of the Linnean Society, 2020, XX, 1–13

throughout the study site suggesting that any impact 
of these animals on our analyses should have been 
evenly distributed among the spatial clusters of 
individuals detected (see below). Further, comparisons 
of capture localities and localities at which unmarked 
animals were typically sighted suggested that these 
unmonitored individuals were unlikely to have 
overlapped spatially with the apparently solitary 
individuals identified by our social network analyses 
(see below). For animals monitored via telemetry, 
the mean number of daytime radio fixes recorded 
per individual was 62.9 ± 30.7 (range = 16–123); 
the mean number of visual sightings per individual 
was 12.9 ± 7.2 (range = 0–24). Analyses of daytime 
telemetry data from a randomly-selected subset of 
individuals (N = 6) revealed that estimated home 
range size stabilized after ~ 30 radio fixes (Supporting 
Information, Fig. S1). Radio collars for four individuals 
(two males, two females) ceased functioning before 
night-time telemetry data could be collected. As a 
result, data regarding night-time spatial relationships 
were available for only 22 individuals, with 29–30 
night-time telemetry fixes recorded for each of these 
animals.

Visual observations vs. telemetry

Analyses of the subset of 12 individuals for which 
both visual and telemetry data were available 
revealed no significant tendency for home range sizes 
based on telemetry data to differ from those based 
on direct visual observations (Wilcoxon Signed Rank 
Test, N = 12, V = 60, P = 0.1 (Supporting Information, 
Fig. S2)).

Consistency of space use

Analyses of daytime telemetry data collected across 5 
successive days (N = 6 individuals with ≥ ten fixes per 
day) revealed that the mean overlap for MCPs for the 
same individual ranged from 33.0% to 52.5%, with a 
mean coefficient of variation of 0.56 among the animals 
sampled (Fig. 1). Mean pairwise overlap between MCPs 
for the different individuals in this sample ranged 
from 18.5% to 45.8% per day (Supporting Information, 
Fig. S3).

Daytime vs. night-time home ranges

Twenty-two animals were monitored via telemetry for 
five consecutive days and nights. Paired comparisons 
of daytime and night-time MCPs revealed a significant 
tendency for the sizes of night-time home ranges 
(90.8 ± 95.6 m2) to be less than those for daytime home 
ranges (399.3 ± 334.9 m2) (Wilcoxon Signed Rank Test, 
N = 22, V = 250, P < 0.001).

For each animal monitored, telemetry fixes revealed 
a single location at which that individual spent a 
large proportion of time; this location was the same 
for both daytime and night-time fixes for the same 
animal. During the daytime, the mean percentage 
of fixes recorded within a 1-m radius of an animal’s 
most frequently used (modal) location was 8.4 ± 7.3% 
(N  =  22 individuals). When these analyses were 
repeated using a less restrictive 5-m radius around 
an animal’s modal location, this value increased 
to 27.4  ±  21.4%. For night-time data, the mean 
percentages of fixes recorded at an animal’s modal 
locality (N = 22 individuals) were 49.6 ± 20.9% (1-m 
radius) and 78.9 ± 16.1% (5-m radius). The tendency 
for individuals to spend a greater percentage of fixes 
at a single, modal location during the night was not 
significant for the 1-m radius around the putative 
nest (Wilcoxon Signed Rank Test, N = 22, V = 110.5, 
P = 0.87); however, it was significant for the 5-m radius 
(Wilcoxon Signed Rank Test, N = 22, V = 210, P < 0.001). 
Analyses of the maximum distance at which each 
animal was detected from its modal location indicated 
that individuals travelled significantly further from 
their putative nests during the daytime (60.9 ± 46.1 
m) than during the night (15.3 ± 9.49 m; Wilcoxon 
Signed Rank Test, N = 22, V = 231, P < 0.001). Of 
the 22 individuals followed via telemetry during the 
night-time, 18 (81.8%) used a single modal locality 
during all five nights of data collection. In contrast, 
the remaining four (18.2%) animals (three males, one 
female) each used two nest localities; for each of these 
individuals, the most commonly used nest site was 
shared with conspecifics whereas the less commonly 
used nest site was not. The mean percentage of fixes at 
these animals’ primary and secondary locations were 
67.5 ± 9.95% and 31.75 ± 9.53%, respectively. Nest use 
by these latter four animals was dynamic, with these 
individuals switching between their primary and 
secondary nests both within and between nights.

Male vs. female home ranges

When all individuals for which daytime telemetry 
data were available were considered (N = 26), mean 
home range size for males (773.1 ± 462.4 m2; N = 10) 
was greater than that for females (355.5 ± 248.15 m2; 
N = 16); this difference was significant (Mann-Whitney 
U, W = 114, P = 0.01). For the subset of individuals 
(N = 12) for which both visual and daytime telemetry 
data were available, there was no significant difference 
in mean home range size for males vs. females for 
either data collection method (visual: Mann-Whitney 
U, N = 4, 8, W = 15, P = 0.93; telemetry: Mann-Whitney 
U, N = 4, 8, W = 16, P = 0.49). MCPs constructed from 
night-time telemetry fixes revealed no significant 
difference between mean home range size for males 
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(76.9 ± 76.4 m2; N = 8) vs. females (98.7 ± 106.9 m2; 
N = 14) (Mann-Whitney U, W = 53, P = 0.80). Maximum 
distance travelled from the putative nest during the 
daytime did not differ between males (69.3 ± 28.3 
m; N = 8) and females (56.1 ± 54.0 m, N = 14; Mann-
Whitney U, W = 74, P = 0.23). Similarly, there was no 
difference in the maximum distance travelled at night 
by males (16.8 ± 11.5 m, N = 8) vs. females (15.3 ± 8.1 
m, N = 14; Mann-Whitney U, W = 54, P = 0.91).

Overlap of home ranges

Mean percent overlap of home ranges among 
individuals for which both daytime and night-time 
telemetry data were available (N = 22) was greater 
during the day (41.9 ± 30.6%) than during the night 
(26.5 ± 26.6%); this tendency was significant (Wilcoxon 
Signed Rank Test, V = 604.5, P = 0.009). Mean home 
range overlap among individuals for which both 
daytime visual and telemetry data were available 
(N = 12) was 28.8 ± 28.4% when animals were above 
ground (visual data) and 42.6 ± 31.7% when they 
were below ground (telemetry data); the apparent 
tendency for overlap to be greater below ground was 
not significant (Wilcoxon Signed Rank Test, V = 145, 
P = 0.07).

Evidence for spatially distinct groups

Analyses of association indices based on overlap of 
daytime MCPs (telemetry data only) revealed that 
members of the study population were spatially 
associated with a mean of 3.7 ± 2.1 conspecifics. 
Network analyses of the 26 individuals examined 
generated a cophenetic correlation coefficient of 

0.89, indicating a strong correspondence between 
the association index and patterns of home range 
overlap. Maximum modularity was 0.71. Based on 
an association index cut-off of 0.08, these analyses 
identified five distinct clusters of animals plus 
one solitary individual (no significant spatial 
association with conspecifics detected). Mean 
overlap of daytime home ranges among individuals 
assigned to the same cluster was 46.1 ± 31.5% vs. 
23.6 ± 23.4% among individuals assigned to different 
clusters; this difference in mean percent overlap 
was significant (Mann-Whitney U, W  =  1129.5, 
P = 0.003).

Temporal differences in spatial associations

To allow for more direct assessment of potential 
temporal differences in spatial and social relationships, 
analyses of daytime spatial associations were repeated 
using the subset of 22 individuals for which both 
daytime and night-time telemetry data were available. 
Analyses of this more restricted dataset generated a 
cophenetic correlation coefficient of 0.90. Maximum 
modularity was 0.72 and the association index cut-off 
was 0.1. These analyses revealed the same five spatially 
distinct clusters of individuals described above 
(Fig. 2A); the four individuals excluded from these 
analyses due to the absence of night-time data included 
the one solitary individual identified from analyses of 
all radio-collared animals (N = 26; see above). Mean 
overlap of home ranges among individuals assigned 
to the same cluster was 46.7 ± 30.0% vs. 24.1 ± 24.7% 
among individuals assigned to different clusters; this 
difference in mean percent overlap was significant 
(Mann-Whitney U, W = 485, P = 0.03).
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In contrast, analyses of night-time telemetry data 
revealed seven spatially distinct clusters of animals 
plus two solitary individuals (no significant spatial 
associations with conspecifics detected; Fig. 2B). All 
individuals that were spatially associated at night were 
also spatially associated during the day; the greater 
number of night-time clusters as well as the presence 
of the two apparently solitary animals was due to 
the subdivision of daytime clusters; all individuals 
that were spatially associated at night were also 
spatially associated during the daytime (Fig. 2A, B). 
The cophenetic correlation coefficient for analyses 
of night-time data was 0.97. Maximum modularity 
was 0.82 and the association index cut-off was 0.05. 
Although the mean number of individuals per night-
time cluster (2.4 ± 1.2, N = 7 clusters) was less than 
that for daytime clusters (4.3 ± 2.6, N = 5 clusters), 
this difference was not significant (Mann-Whitney U, 
W = 39.5, P = 0.14). Clusters containing more than 
one adult were typically female-biased (daytime: 3.2 
females per male; night-time: 1.8 females per male), 

although there were also daytime (N = 2) and night-
time (N = 1) clusters containing multiple adult males. 
Mean overlap of home ranges for individuals assigned 
to the same night-time cluster was 25.3 ± 26.6% vs. 
4.9 ± 1.2% among individuals assigned to different 
clusters; this difference in mean percent overlap was 
significant (Mann-Whitney U, W = 151.5, P = 0.009).

Above- vs. below-ground associations

Spatial associations based on MCPs constructed from 
direct visual sightings (animals located above ground) 
vs. daytime telemetry fixes (animals located below 
ground) were completed for the subset of 12 individuals 
for which ≥ 10 visual sightings were obtained. The 
cophenetic correlation coefficient for visual data was 
0.96 and maximum modularity was 0.60. Based on 
an association cut-off of 1.5, four spatially distinct 
clusters of animals as well as two solitary individuals 
were detected (Fig. 2C). Analyses of daytime telemetry 
fixes for this subset of individuals revealed three 

Figure 2.  Undirected and unweighted social networks constructed for members of the study population. Networks based 
on telemetry data from 22 individuals were compared for (A) daytime and (B) night-time radio fixes. Additionally, daytime 
networks were compared for 12 animals that were (C) sighted above ground and (D) detected below ground via telemetry.
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clusters of individuals plus the same two solitary 
animals detected from visual observations (Fig. 2D). 
The cophenetic correlation for the telemetry data 
was 0.90, with a maximum modularity of 0.51 and 
an association cut-off of 0.07. The smaller number of 
clusters detected via telemetry was due to the merger 
of two distinct clusters revealed by analyses of visual 
data.

Nest sharing

Comparisons of the modal night-time location(s) 
identified for each individual revealed that multiple 
animals shared the same putative nest site during 
each night of data collection. Of the 22 individuals 
monitored during night-time, only two (9.0%) 
were never detected at the same putative nest as 
other conspecifics (Fig. 3). In contrast, 16 (72.7%) 
individuals were consistently found at the same 
putative nest site with one or more conspecifics. 
The remaining four (18.3%) animals (three males, 
one female) had two nest localities each: for each of 
these animals, the most commonly used nest site was 
shared with conspecifics whereas the less commonly 
used site was not. With one exception (Fig. 3C), all 
individuals that shared night-time nests belonged to 
the same spatial cluster, as identified from daytime 
telemetry fixes.

DISCUSSION

Our analyses of spatial relationships indicate that the 
population of C. opimus at Pozuelos is group living. 
Individual home ranges were larger during the day 
than at night, but the location at which each animal 
was most frequently detected (i.e. its putative nest 
site) was consistent across both time periods. Spatial 
relationships among individuals did not differ with 
ecological context, specifically whether individuals 
were observed above ground or detected below ground 
via telemetry. Although spatial clusters of animals 
were generally consistent throughout the 24-h cycle, 
two daytime clusters appeared to fission at night, with 
the result that individuals in these groups tended to 
be associated with fewer conspecifics during the night-
time. All individuals that shared a night-time nest site 
were assigned to the same daytime spatial cluster. In 
contrast, some animals that were spatially associated 
during the day occupied different nest sites at night. As 
a result, while social relationships tended to be linked 
to occupancy of a shared nocturnal nest site, this was 
not always the case, indicating that nest site alone was 
not a reliable predictor of spatial relationships among 
individuals.

In addition to spatially distinct clusters of 
individuals, our analyses revealed the presence of 
several animals that were apparently not associated 
with conspecifics. Because not all adults in the study 
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population were fitted with radio collars, we cannot 
exclude the possibility that the “solitary” animals 
detected were in fact associated with individuals that 
were not monitored via telemetry. Visual observations, 
however, revealed that the animals for which telemetry 
data were lacking were scattered throughout the study 
site and did not occur in close proximity to apparently 
solitary individuals, suggesting that our identification 
of the latter was correct. More importantly, even if 
all adults in the study population had been followed 
via telemetry, variation in the number of individuals 
per spatial cluster would still have been evident, as 
would the tendency for some spatial clusters to fission 
during the night. Thus, while our data may not have 
captured the full composition of all spatial clusters 
of individuals, we believe that the general patterns 
revealed by our analyses are robust and provide a 
reasonable reflection of spatial and social structure in 
the study population.

Effect of ecological context: above- vs. below-
ground relationships

Individuals at our study site were often sighted 
foraging and sunning above ground during daylight 
hours; this behaviour seemed to be influenced by 
weather conditions, with animals being most visible 
on sunny days with little wind. At all other times, 
individuals were below ground and their locations 
could only be detected via telemetry. This variability in 
surface activity allowed us to assess above- vs. below-
ground spatial relationships independently of circadian 
patterns of activity. Our analyses revealed the same 
clusters of individuals for both above- and below-ground 
data sets, suggesting that spatial relationships were 
stable across these ecological contexts. Similar results 
have been reported for California ground squirrels 
(Otospermophilus beecheyi) (Smith et al., 2018), in 
which social network connections observed when 
individuals were above ground were generally the same 
as those detected when the animals were below ground. 
This consistency in spatial relationships has important 
implications for understanding the adaptive benefits 
of group living members of the study population. 
More specifically, differences in spatial relationships 
were not detected when individuals were above vs. 
below ground, suggesting that the selective pressures 
favouring group living in this population do not differ 
significantly according to whether the animals are in 
their burrows or active on the soil surface.

Temporal variation in relationships

Home ranges were smaller, maximum distances 
travelled from the nest were shorter, and percentages 
of fixes at putative nest sites were greater during the 

night than during the day, suggesting that members 
of the study population are diurnal. Although most 
spatial clusters of animals persisted throughout the 
24-h cycle, two daytime clusters appeared to fission 
at night. As noted above, these night-time clusters 
were subsets of larger, daytime clusters; in no case 
did an individual spend the night with animals with 
which it was not associated during the day. Similar 
variation in daytime vs. night-time patterns of 
spatial relationships have been described in degus 
(Octodon degus) (Ebensperger et al., 2004) and cururos 
(Spalacopus cyanus) (Lacey et al., 2019). Although this 
temporal difference in behaviour may increase the 
complexity of assigning individuals to social groups 
based solely on patterns of daytime space use, spatial 
overlap among members of our study population 
that were assigned to the same daytime cluster was 
significantly greater than that among individuals 
assigned to different clusters, suggesting that group 
membership in C. opimus can be reliably determined 
based on daytime spatial relationships. Nevertheless, 
comparing diurnal and nocturnal patterns of space use 
is important because circadian differences in spatial 
relationships may reflect biologically important 
differences in activity (e.g. foraging during daylight) 
that shape interpretations of the adaptive bases for 
social relationships among individuals. Because the 
data considered were collected during a single, limited 
portion of the year, future studies will benefit by 
assessing spatial and social relationships—including 
potential circadian differences in these parameters—
across multiple seasons and portions of the animals’ 
annual reproductive cycles.

Evidence for group living

Spatial relationships among individuals were 
consistent with the two criteria typically used to 
identify sociality in subterranean rodents (Lacey 
et al., 2000). First, members of the study population 
displayed extensive below-ground spatial overlap, 
providing evidence that these animals meet the 
criterion that multiple adults share the same burrow 
system. Second, most individuals shared their nest 
site(s) with conspecifics, thereby fulfilling the second 
criterion for sociality in subterranean species. Because 
members of the study population were less active at 
night, sharing of nest sites during this portion of the 
24-h cycle may be particularly informative regarding 
social relationships among individuals (Lacey et al., 
2019). Burrow and nest sharing have been used to 
identify group living in other subterranean species, 
including colonial tuco-tucos (C. sociabilis) (Lacey 
et al., 1997), naked mole rats (Heterocephalus glaber) 
(Bennett & Faulkes, 2000), Damaraland mole-rats 
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(Fukomys damarensis) (Faulkes and Bennett, 2007), 
and cururos (S. cyanus) (Lacey et al., 2019) and our 
data provide compelling evidence that the population 
of C. opimus at Pozuelos is also social.

To date, telemetry data have been used to characterize 
spatial and social relationships for only seven of the ≥ 60 
recognized species of ctenomyids (Fig. 4). Of these, four 
species have been classified as solitary, meaning that 
each adult occupies its own burrow system (C. australis 
(Cutrera et al., 2010); C. haigi (Lacey et al., 1998); 
Ctenomys minutus (Kubiak et al., 2017); C. talarum 
(Cutrera et al., 2006, 2010)). Although occasional 
spatial overlap among adults has been reported for 
Ctenomys rionegrensis, individuals do not appear to 
routinely share burrow systems and do not share nest 
sites (Tassino et al., 2011, Estevan et al., 2016) and 
thus, we have included this species with the solitary 
taxa shown in Fig. 4. In contrast, C. sociabilis is clearly 
social (i.e. group living) based on the criteria outlined 
above, with multiple adults regularly sharing the 
same burrow system and nest site (Lacey et al., 1997; 

Lacey & Wieczorek, 2004; Izquierdo & Lacey, 2008). In 
comparison, our data suggest that C. opimus displays 
a form of sociality in which individuals share burrow 
systems and nests but group structure is somewhat 
more fluid than that in C. sociabilis, in which social 
groups are clearly distinct (i.e. no overlap between 
animals from different spatial clusters) and there are no 
differences in the daytime vs. night-time compositions 
of spatial groups (Lacey et al., 1997; Lacey & Wieczorek, 
2004). In contrast, although home range overlap in 
C. opimus was greater for individuals assigned to the 
same spatial cluster, individuals assigned to adjacent 
clusters did overlap with one another. Further, the 
composition of some clusters differed between daytime 
and night-time, providing evidence of a temporal 
variability in behaviour not observed in C. sociabilis. 
Collectively, these contrasts lead us to suggest that the 
population of C. opimus at Pozuelos is characterized by 
an intermediate form of spatial and social structure not 
previously reported for ctenomyids.

Individual variation in spatial and social 
relationships

The term facultative sociality has been used to 
describe the behaviour of populations or species in 
which individuals vary in their degree of spatial and 
social interaction with conspecifics. Vertebrate species 
that have been characterized as facultatively social 
include European badgers (Meles meles) (Newman 
et al., 2011), California ground squirrels (O. beecheyi) 
(Smith et al., 2016), yellow-bellied marmots (Marmota 
flaviventer) (Blumstein, 2013), Amazon red squirrels 
(Sciurus spadiceus) (Eason, 2010), yellow mongooses 
(Cynictis penicillata) (Balmforth, 2004), and eider 
ducks (Somateria mollissima) (Öst et  al., 2015). 
This term has also been used to describe multiple 
invertebrates, notably some species of carpenter 
bees (Ceratina australensis (Rehan et al., 2010) and 
Ceratina calcarata (Shell & Rehan, 2017)) and sweat 
bees (Megalopta genalis (Wcislo, 1997; Smith et al., 
2018)). Our analyses have revealed a similar pattern 
of spatial and social variation in C. opimus, suggesting 
that this species—at least the population at Pozuelos—
may also be facultatively social.

Identifying examples of facultatively sociality, 
however, may be more challenging than this discussion 
suggests. Definitions of this term differ and include 
individual- as well as population- and species-level 
variation in social behaviour. We suggest that facultative 
sociality should refer to systems in which members 
of a population display consistent, predictable, and 
adaptive variation in spatial and social relationships. 
Differences in the degree to which animals are 
spatially and socially connected should not result 
solely from stochastic factors (e.g. lone animals arising 

solitary social
C. opimusC. australis 

C. haigi
C. minutus
C. talarum
C. rionegrensis*

C. sociabilis

* apparent sporadic spatial overlap among adults

Figure 4.  Schematic comparing spatial relationships 
reported for members of seven species of Ctenomys for 
which telemetry data are available. Each oval represents 
the home range of one individual; black circles depict the 
distribution of nests relative to individual home ranges. 
Apparent social structures range from solitary (no overlap 
among individuals) to highly social (consistent, almost 
complete overlap among multiple adults). C.  opimus 
at Pozuelos is the first ctenomyid reported to have an 
intermediate pattern of spatial and social structure, in 
which individuals overlap extensively but not completely. 
Figure adapted from Lacey (2000). Citations are as follows: 
C. australis (Cutrera et al., 2010), C. haigi (Lacey et al., 
1998), C. minutus (Kubiak et al., 2017), C. talarum (Cutrera 
et al., 2006; Cutrera et al., 2010), C. rionegrensis (Tassino 
et al., 2011; Estevan et al., 2016), and C. sociabilis (Lacey 
et al., 1997; Lacey and Wieczorek, 2004; Izquierdo and 
Lacey, 2008). *There is minimal evidence that members of 
C. rionegrensis may engage in occasional spatial overlap 
(Tassino et al., 2011).
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due to mortality of social partners) but should instead 
reflect adaptive variation in individual responses 
to intrinsic (genotypic, phenotypic) and extrinsic 
(ecological, environmental) factors. To determine if 
apparent differences in degree of social connectedness 
among highland tuco-tucos meet this more restrictive 
definition of facultative sociality, future studies of these 
animals will (1) examine the consistency of individual 
differences in behaviour over longer timescales, (2) 
assess the fitness consequences of these differences, 
and (3) relate individual variation in spatial and 
social relationships to phenotypic and environmental 
parameters. These analyses should generate important 
insights into the factors associated with individual-level 
differences in social connectedness reported here. More 
generally, studies of C. opimus—in conjunction with 
analyses of other rodents characterized as facultatively 
social—should improve our understanding of how 
behavioural differences among individuals intersect 
with ecological and demographic factors to produce 
population-level patterns of social structure.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

Figure S1. Home range size vs. number of telemetry fixes analysed for a randomly selected subset of six individuals. 
Estimates of home range size are based on 95% minimum convex polygons (MCPs). In general, home range size tended 
to stabilize at ~ 50% of the total number of fixes for an animal, which corresponded to 29.1 ± 17.4 fixes per individual.
Figure S2. Estimates of home range size (m2) based on 95% minimum convex polygons (MCPs) constructed for a 
subset of 12 C. opimus (four males, eight females) for which both telemetry and visual data were available. Paired 
comparisons revealed no significant tendency for individual home range sizes to differ between estimates based on 
telemetry data (grey bars) vs. visual data (white bars) (Wilcoxon Signed Rank Test, N = 12, V = 60, P = 0.1). Further, 
there were no significant differences in estimated home range sizes for males vs. females for analyses based on either 
telemetry data (Mann-Whitney U, N = 12, W = 16, P = 0.49) or visual data (Mann-Whitney U, N = 12, W = 15, P = 0.93).
Figure S3. Minimum convex polygons (95% MCPs) depicting the daytime home ranges of six adult C. opimus (one 
male, five females) monitored via telemetry for five consecutive days. The x and y axes denote the location of each 
MCP on the study site. For each individual, a separate MCP was constructed for each day of data collection. All MCPs 
for the same day are shown together; colours at right indicate which individual corresponds to a given MCP. Mean 
daily pairwise percent overlap of MCPs ranged from 18.5% to 45.8% per day; daily means are shown in each panel.
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